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Sushil Kumar, Meera Sharma, S. K. Muttoo, and V. B. Singh

Abstract Defect categorization s an important task which helps in software main-
tenance. It also helps in prioritizing the defects, resource allocation, etc. Standard
machine learning techniques can be used to automate the categorization of defects.
Labeled data 18 needed for learning models. The expert is required for obtaining the
labeled data. Sometimes, it is costly or expert is not available. So, to overcome this

dependency, crowd labeled data is used to train a model. Crowd (a set of novices)

is asked to assign a category as defined by IBM’s Orthogonal Defect Classification
gories through crowd can be inaccurate

(ODC) to the defect reports: Obtaining cate
or Noisy- Inferencing ground truth is a challenge in crowd labeling. Support Vector

Machine, k Nearest Neighbor and Gaussian Naive Bayes classifier, aré learnt effec-
tively using new methodology from data labeled by  set of novices. In this chapter,

we have proposed a learning ct the impact

model which learn$ effectively tO predi
category of software defects using the expectation maximization algorithm and shows
ng to the various types of metrics b

the better performance accordi y improving the
existing technique by 8% and 11% accuracy for Compendium and Mozilla datasets

respectively-

Keywords Crowd labeling * Naive Bayes classifier Categorization * Expectation

maximization
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1 Introduction

Defect categorization is an important task that improves the efforts needed for soft-
ware maintenance during software development process [1]. Defect categorization i
a time consuming task which is done manually by the experts and involves high cost.
Machine learning techniques like Supervised learning algorithms [2] can be used to
categorize the defects as these algorithms need labeled dataset to train a classifier.
To get the labelled dataset in case of unavailability of experts is a very challenging
task. Crowd labeling can be used to obtain the labeled data. It is a process to get
the data labeled by a set of novices or nonexperts. It is possible to learn to classify
from this type of labeled data [3]. The number and quality of these novices influ-
ence the learning of classifier from this data set. The major concern of learning form
crowd labeled data is the reliability. This chapter addresses the realiability issue of
non-experts through expectation maximization algorithm.

Data set contains the category that is defined by the Orthogonal Defect Clas-
sification (ODC). The ODC was initially specified In (4] for defect classification
to improve software development process. The main motive behind ODC was to
extract defect information and to know the relation between cause and effect. The
ODC permits software developers to distinguish defects based on their impact on
customer. Categorization of software defects provides valuable information which
is very useful to prioritize and fix the defects. It can also be helpful in prediction of
defects and assigning defects to software developers.

This chapter explores the possibility and proposes a methodology to learn an accu-
rate classifier for predicting the impact of software defects from the crowd labeled
data using expectation maximization algorithm. The process of defect categorization
is showninFig. 1. A methodology similar to [21]is used to integrate the labels to find
the ground truth to train three classifiers, namely Naive Bayes, k Nearest Neighbor
and Support Vector machine.

The main contribution of this chapter is defect categorization from unstructured
text from summary and description and analysis of subjective labeling assigned to the
defect report by non-experts using Expectation—Maximization algorithm. Training of
classifier has been done by taking into account the reliability of each non-expert. The
performance has analysed based on majority voting and Expectation—Maximization
algorithm.

This chapter is organized in following sections. Section 2 discusses the related
work, ODC and Crowdsourcing. Datasets, Classifier and Expectation Maximization
are explained in Sect. 3. Section 4 explains the methodology. The experimental work
and metrics are explained in Sect. 5 Results are presented and discussed in Sect. 6.

et

Fig. 1 Process of defect categorization

Labeled Data
(Summary, description,
labels)
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Section 7 discusses the threats to validity. Section 8 concludes the chapter with future
work.

2 Related Work

Learning from crowd (a set of non-experts) is a new Supervised Jearning paradigm
in which the real or true labels of examples or instances are unavailable. Howeyver,

each instance is provided with a set of noisy class labels, each indicating the class-

membership of the instance according to the subjective opinion of an annotator.

Many research works have been carried out in recent years. Most of them focus on
Jabeling techniques and on the quality of the labels. Snow et al. [5] evaluated that
the knowledge of four annotators is equal to the one expert. Sheng et al. [6] in his
study proposed the idea of relabeling and also compared advantages of it. The idea of
weak labeling was proposed by Benaran-Munoz et al. [7] in which every annotator
provides more than one label for each instance. GLAD Whitehill et al. [8] proposes
different levels of expertise and difficulty of examples. Donmez et al. [9] proposes 2
novel method of repeated trials t0 get the knowledge about a label and as well as about
a labeller. Welinder and Perona [10] distinguished between 2 reliable and unreliable
labeller. In case of unreliable labeler, more labels need to be asked. On the other
hand for a reliable labeler, acquired label is a true label. The probability of getting
true category/label follows a Bernoulli distribution by Yan et al. [11]. Gonzalez et al.
[12] proposes to learn a classifier using five novices with k Means clustering and EM
method. Dermartini et al. [13] proposed the method based on probabil'rstic reasoning
and crowdsourcing. Furthermore, severity prediction of defect reports based on the
textual description of defects using machine learning algorithms has been performed.
Chaturvedi and Singh [14], proposed a severity prediction method which classifies
the severity of the defect reports using supervised machine learning algortihms,

namely Multinonmial Naive Bayes, Support Vector Machine, k-Nearest Neighbor,

Naive Bayes, J48 and RIPPER. To carry out the experimental work, the authors
collected the two bug reports data sets from NASA and PROMISE repository- Text

mining techniques are applied on bug description to extract the relevant features.
rove the feature selection

Liu et al. [15] present 2 ranking-based technique to imp

algorithms and also propose an ensemble feature selection algorithm. To evaluate
the performace, the authors collect bug reports from two projects, namely Eclipse
and Mozilla. They improve the existing methods by 54.76% in terms of f-measure.

In [16], authors present a severity prediction technique using textual features of bug

reports from three projects Eclipse, Mozilla and Gnome. They were able to achieve

67% accuracy using adaboost classifer. Yang et al. [17] present a severity prediction

approach based on emotion similarity of the reporter by calculating the emotion

similarity probability. To validate the proposed approach, they collected the bug
reports from five projects: GNU, JBoss, Mozilla, Eclipse and Wireshark.
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Table 1 Defect impact category m\d their definition

Impact { Definition

Capability The ability of the product/system to perform its intended functions and
S 7 Asalisfy the customer’s functional requirements B
Es_‘ltj‘_h})' - ATl_\e ability to use and utilize functions of a system by the user
Performance The speed and rcsponsivencsé of the product/systemV.LasrpcrrcéiAv‘é;i l;;the

customer

o o - . i -

Reliability he ability of the producu/system - comsistently perform its intended
functions without unplanned interruption ’

lrlsia_lhibility Thi_:ibility to easily install a product

Maintainability | The ease with which a failure can be diagnosed and the product/system can

be upgraded to apply corrective fixes without impacting the customer’s data
and operations

The ability of a system to provide user manuals and documentation to its
user to understand a system easily

The ease and degree to which the product/system can be upgraded to the
| newer release without impacting the customer’s data and/or operations

Documentation

Migration

|

Standards l The degree to which the product/system conforms to established pertinent
1 standards

I Ri———
Integrity/security | The degree to which the product/system is protected from inadvertent or
| malicious destruction, modification,
e,

or disclosure

Capacity | The loss of capability when configured at full capacity

Serviceability L’Fhe—gapacity to diagnose faults and failures easily

2.1 Orthogonal Defect Classification (ODC)

Orthogonal Defect Classification (ODC) is 2 precise system for Software Defect
Classification created by IBM in the mid of 1990s [4]. ODC empowers in-process
input to designers by separating marks on the improvement procedure from defects.
The 13-classification ODC enables engineers to isolate absconds relying upon their
effect. It is especially appropriate for open-source ventures. The impact category and
the definition are provided in Table 1. The program structure involved in defect can

be indicated by ODC [18].

2.2 Crowdsourcing and Learning from Crowd

The author distributed an article in the wired magazine in 2006 [19]. In this article,
He profoundly broke down the effect of a rising miniaturized scale outsourcing
through Internet on current business conditions and the term crowdsourcing was first
presented. Crowdsourcing has become an important strategy to manage issues at any
phase of Software Development Life Cycle (SDLC) from software requirements to
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maintenance [20, 21). It is a way of solving a problem with collective efforts [22,
23]. There are various online platforms such as Amazon’s MTurk and crowdFlower
where a problem can be posted. Crowdsourcing is very helpful in decision making to
a software development team. The enthusiasm for the learning from crowd is because
of getting large amount of data labeled at very cheap cost through web.

Learning form labeled data by crowd is challenging as each instance of a dataset is
assigned a category by non-expert. These non-experts aré of obscure trustfulness. The
Jow reliability of these non-experts is another challenge. There are various strategies
proposed in past literature. However, in such cases where there is no ground truth and
trustworthiness of each non-expert is doubtful, a classifier can be Jearnt by combining
the opinion of each non-expert. Snow et al. [5] estimated the contribution of the non-
expert annotators: they recommend that the blend of four non-expert explanations
coordinates the information of domain expert.

The following research question has been addressed in this chapter:

Research question: Can we predict more accurately the impact of software defect
by estimating the reliability of each non-expert?

The chapter in address to the above question, studied the two datasets
Compendium and Mozilla that covers the entire product in both the datasets. To
do further analysis, three classifiers Naive Bayes, Support Vector Machine and k
Nearest Neighbor are trained. EM based technique similar t0 [24, 25] are used.
The technique uses the subjective opinion of all the non-expert and estimates the
reliability of each non-expert.

3 Datasets and Methods

3.1 Datasets

Two datasets Compendium and Mozilla have been used directly from [12]. The
Compendium dataset is taken from http://compendium.open.ac.uk/bugzilla/ which
is a software tool. All issues reported in August 2014 are considered. Total 846
defects were obtained. Another dataset Mozilla has 598 defects. Mozilla is an open
source application. For both the datasets, two fields summary and description are
considered. Figures 2 and 3 show the number of labels assigned by the non-experts
(labelers) according to the impact categories defined by ODC for the Compendium
and mozilla datasets respectively. Usability, requirement and Capability are the most
assigned categories for Compendium dataset.
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Integrity/Security
Standard
Reliability
Performance mLSs
Migration ‘ L4
Usability [ L | w13
Documentation w2
Requirement |
q Bl
Installability
capability ki t h
400 500
Fig. 2 Number of labels assigned by five labellers for Compendium dataset
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Fig. 3 Number of labels assigned by five labellers for moziila dataset

3.2 Expectation—Maximization

Expectation Maximization algorithm has been widely used (8, 10, 23-25]. The
Methods based on expectation maximization i not new in crowd learning methods.

The EM based technique proposed similar to [25] for multidimensional learning
from crowd labeling is used to categorize the software defects.

Let N be the number of defect reports (instance or examples) in a dataset. Let ni,
be the number of times, 2 defect instance d is labeled with label I. Let a function
bf is defined as, bﬁ = 1, if the assigned label is same as the true label (i.e. | =
1"y and O otherwise. We assume that the labels are assigned independently by the
labelers (non—experts). By the definition of multinomial distribution we can define

the probability of a observed (assigned) label while the true Jabel I’ (most voted label)

is known using Eq. (1) as
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! .
I'U\l.d)\\Hmllh"' ()
=1

lgl cach defect example ‘d” ot a dataset D is labeled independently, then we can
rewrite the above equation as (2) for each category ‘' for all the defect examples.

N OC I .
i o ool [,,(l'u)"" i (2)
d=1c= =1

Algorithm: EM D, n, €)

e D =< \d,.I,)>\\'herc 1<i<n
e D= < (d 1pda)s (duln) >

1. Initialization
I

n
Calculate E[b;] = ’an 3 (3)

5. M step: Select the value for (4) and (5)

, Z-b’.-n’d
o) = =e="T 71 4
U0 =S5 b1, @
1
and p(D) = 3 Y b (5)

to maximize the likelihood.

3 E step: Estimate the reliability of each non-expert as

1 = I _ — C g\
pip) = p =10y =11, (W) p() (6)

Repeat Steps (2) and (3) until i reaches 1o Maximum [teration N or
differnces between jterations <0.001.

The EM system enables us O consolidate the estimation of each non-expert that
display the dependability of every labeler and the learning of the model utilizing the
hese non-cxperts. The initial value is calculated using Eq. (1) as

labels assigned by t
the ratio by counting the frequency of a specific label to the total pumber of labels

assigned. In our technique, the Expectation Step calculates the expectation for each
non-expert 10 estimate the reliability using Eq. (6), by integerating the probability
of a label with the probability of true label when observed label 18 given for each

category and thus calculate the estimated posterior probabilities.Thc Maximization
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step, the model parameters are re-evaluated with the end goal that the probability is
augmented given the information and the loads assessed in the Maximization step
using Egs. (4) and (5) which are the maximum likelihood estimators of p(’|l) and
p(). p(I'll) is the likelihood of true label when observed label is given and p(l)
is the probability of observed label. Iteratively, the steps 2 and 3 are rehashed until

the likelihood converges to a local maxima or the maximum number of iterations is
reached.

3.3 Classification Model '

The model uses the summary and description field to predict the impact category of
a defects reported in the two datasets of Compendium and Mozilla. The Naive Bayes
(NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) classification
algorithms are used to categories the defects. Naive Bayes classifier [26] is one of the
most effective classifier because of its performance with other competitive classifiers.
It Jearns by computing the probability of an attribute x; given the class yi where
(xi,yi) € Die. training data. Naive Bayes classifier makes strong assumption that
all the attributes x; are independent.

Support Vector Machine (SVM) [27] is a supervised learning technique which is
initially used for dividing hyperplane. Its capability to generalize and better perfor-
mance for multiclass problem makes it suitable for categorizing software defects.
k Nearest Neighbor (k-NN) is a very simple supervised technique. It is suitable for
large datasets and assigns a category to new object by finding its nearest neighbor.

4 Methodology

As specified by [12] a group of five non-experts are asked to provide category to each
example of the defect reports of compendium and mozilla. The categories assigned
by each non-experts were processed along with the summary and description fields
as in Fig. 4.

The graphical representation of the whole learning process is shown in Fig. 5.

The text provided in summary and description field are combined as summary and
pre-processed using Natural Language Processing Tool Kit (NLTK) implemented in
python. Figure 6 depicts all the steps of data processing. The relevant and important
words from the summary field were extracted so that it can be easily used by machine
learning techniques [28, 29]. Stop words were removed by downloading the stop
words from nltk and by importing nltk.corpus.reader package written in python.
The Text in summary field was converted to lowercase using the in-built lower 0
function. Porter stemmer [28] was used for stemming the words and also the tokens
were formed. A bag of words was created by extracting features and countVectorizer
is improted to count the frequency of a word. The value for max-features parameter of
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countVectorizer function was setto 900. Term frequency inverse document frequency
(TF-IDF) was calculated for every word. The value for parameter in EM based
technique was set to 0.001. The number of iteration was set to 400. This helps to
learn a classifier more accurately by using the crowd learning approaches. We have
used tenfold cross validation to split the datasets. All the classifiers learn from the
same dataset.

5 Experimental Framework ,

The various experiments on two datasets have been performed. The capabilities of
EM based techniques have been explored. The different metrics are used to check the
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The performance of classifiers using the different metrics described m Table 238
shown in Tables 3 2 4 Table 3 shows the acCuracy. precision. reczll zmd T mEESEE
for Naive Bayes. sVM and KNN classifiers on the Compendium ¢z2sst = zas e
performance of these classifiers are showm in Teble £ on e Mozillz daraset

6 Results and Discussion

The labels assigned by different non-€xpers a< compared for both compendium
and mozilaz .« We have used the same datasets as of [12] For compendinm
datasets, wWe considered installability. Requirement. Usability and other Other1s 2
new label which is assigned to rest of the labels. The classfiers Naive Bayes. SV
and kNN are learnt using these four categories. For Mozlla datassl installabifity.
maintenance, reliability and other (new label) are used to train 2 classifier. )

S0 as to give a total overview of the performance of classifiers. namely Naive
Bayes, SVM and KNN. the results are presented in Tables 3and = ~erformance
of the classifiers learnt using Compendium dataset are shown

z

n Tzble 3. Table =
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Table 5 Comparison of " | Agproc ey (%)
as . Accuracy (%
proposed approach to the Ei-m—bi——’ Appmc—h— couracy (%)
Hernanedez Gonzalez [12] in Compendium Reference [12) 4
terms of accuracy based on i’ropbsed 62
EM algorith Fa— — | 54 o
goritm Mozilla Refgrenger[lgl 4
Proposed 65

presents the result of classifiers learnt using Mozilla dataset. The results provide in
Tables 3 and 4 measure the performance of classifiers using the same metric for both
the dataset. The metrics accuracy, precision, recall, F measure and maximum and
minimum recall are used in this chapter. The definition of metrics to evaluate the
performance of classifiers is provided in Table 2.

Columns of Tables 3 and 4 show the majority voting, EM based method and
different metrics accuracy, precision, recall, F measure, maximum and minimum
recall. Whereas row represents the experiment values for each classifier. The best
value for each classifier is represented in bold. The differences between minimum
and maximum recall values are related to the accuracy and f measure. The high
difference indicates the large values of accuracy while low difference contributes to
high f measure values. Hence the performance of the classifiers can be assessed from
these values across all labels.

We have also compared our results on the same dataset compendium and mozilla
used by Herndndez- Gonzalez’s etal. [12]. They have classified their dataset by using
naive bayes, 2DB (Dependence Bayesian) and TAN (Tree Augmented Naive Bayes).
By analyzing the results, we can observe that maximum 62% accuracy is achieved
in case of compendium dataset when naive bayes classifier is learnt. An accuracy of
65% is achieved when navie bayes classifer is learnt using Mozilla dataset as shown
in Table 5.

Figures 7 and 8 shows the comparision of accuracy for Compendium and Mozilla
respectively.

The results comparision with the previous approaches are shown in Table 6.

Comparision based on accuracy

_ Proposed Ap

proach,

0.6 e el 0.62
| 0.55 p— - "HE?“}&EZ’ T [
‘ Gonzalez(2018), 0.54
|

| 05 - —— s E———— e ————

Fig.7 Comparision based on accuracy between two approaches for compendium dataset
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. Proposed Approach,

0.65

-

Fig. 8 Comparision based on accuracy between two approaches for mozilla dataset

Table 6 Comparision with other approaches

Approach ’ Accuracy (%) | Precision (%) | Categories | # Defect reports
Thung et al. [2] 77.8 69 Control and data flow, | 500
structural and
non-functional
Thung et al. [31] - 65.1 Control and data flow, | 500
structural and
non-functional
Liu et al. [32] 79 75 Data, computational, | 1174
| interface, control/logic
Hunag et al. [33] [I 80.7-82.9 [ - ODC impact attributes | 1653
ODC impact attributes | 1444

Gonzalez et al. [12] | 62-64

-

7 Threats to Validity

In this section we have discussed various threats to validity to our study.

7.1 Threats to Construct Validity

Threats to construct validity refer to the selection of measures and measurement
tools. We have used four measures to evaluate the performance of our proposed
model. These four measures are accuracy, precision, recall and f-measure. These
measures are commonly used. So we can believe that there is minimal threat to

construct validity.
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7.2 Threats to Internal Validity

Threats to internal validity refer to the biasness of the experimenter. These defect
reports are labeled manually by five people having no expertise. The distribution of
classes/labels for both the datasets is not uniform. The performance of classifiers
are different for both the datasets. It can due to the text describing the defects and
preprocessing the textual description. As we are only using the unstructured textual
defect reports, it can influence the result of the categorization. '

7.3 Threats to External Validity

We have used 1444 defect reports from two projects. The number of defect reports
may not be enough to generalize the results. Manual labeling of defect reports
according to one of the ODC attributes is a difficult and lengthy task and the limi-
tation to obtain a large dataset. Generalizability of the result is one of the threats to
external validity.

8 Conclusion and Future Work

The chapter proposed a defect categorization approach based on EM algorithm
through crowd labeled data. Two datasets from compendium and mozilla have been
used to test the proposed methodology. EM method applied to learn three classifiers
naive Bayes, support vector machine and k-NN. The experiment results show the
performance of these classifiers. The EM-based method calculates the reliability of
each non-expert. It models the problem of multiclass using multinomial distribution
and maximum likelihood. Thus classifiers are learnt from the best possible configu-
ration. The proposed approach shows the better performance as compare to exiting
approach by 8 and 11% accuracy. There are various issues which can be fixed in
future. To combine the knowledge of each non-experts, retrieving ground truth from
crowd labeled data are such issues which must be addressed.
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